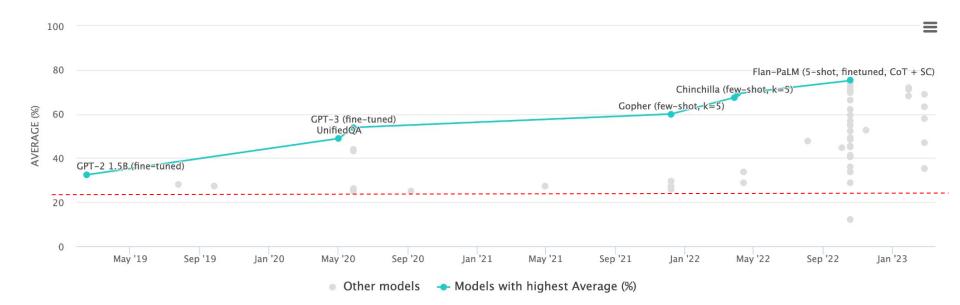
https://tinyurl.com/mlhc2023

Sign-in sheet!

Clinical NLP (Mostly NLP)

Eric Lehman, 3/7/23

NLP has moved... Fast



NLP has moved... Fast

B. 27 / MARC	н 6, 2023	
	ні ChatGPT	E
S	Hello! How can I assist you today?	
	What do you think of a TIME cover story with the title, "The AI Arms Race Is Changing Everything?"	
\$	As an AI language model, I don't have personal opinions or beliefs, but I can provide some context and information on the subject.	
	"The AI Arms Race is Changing Everything" could be an attention-grabbing and thought-provoking title for a cover story on AI. A cover story in a widely-read publication like TIME could help raise public awareness about the potential risks and benefits of this trend, and stimulate discussions on how to ensure that AI is developed and deployed in a responsible and ethical manner.	UY ANDREW D CHOW & BILLY PERRICO (humans)
	It's important to note that the title of the story could also be interpreted as sensationalist or alarmist, and may not accurately reflect the complexities	

ChatGPT is very very good...

About 212 results (0.22 seconds)

HealthITAnalytics

ChatGPT Passes US Medical Licensing Exam Without Clinician Input

According to an MGH research spotlight describing the findings, ChatGPT is an advanced AI chatbot developed by OpenAI and released to the public...

2 weeks ago

113 The Daily Beast

ChatGPT Passed the U.S. Medical Licensing Exam. Will It Be ...

The researchers tested ChatGPT on 350 of 376 publicly available questions from the June 2022 USMLE. The chatbot was able to score between 52.4...

3 weeks ago

ChatGPT is very very good...

The Diagnostic and Triage Accuracy of the GPT-3 Artificial Intelligence Model

David M Levine, Rudraksh Tuwani, Benjamin Kompa, Amita Varma, Samuel G. Finlayson, Ateev Mehrotra, Andrew Beam

doi: https://doi.org/10.1101/2023.01.30.23285067

Results Among all cases, GPT-3 replied with the correct diagnosis in its top 3 for 88% (95% CI, 75% to 94%) of cases, compared to 54% (95% CI, 53% to 55%) for lay individuals (p<0.001) and 96% (95% CI, 94% to 97%) for physicians (p=0.0354). GPT-3 triaged (71% correct; 95% CI, 57% to 82%) similarly to lay individuals (74%; 95% CI, 73% to 75%; p=0.73);

both were significantly worse than physicians (91%; 95% CI, 89% to 93%; p<0.001). As

measured by the Brier score, GPT-3 confidence in its top prediction was reasonably well-

calibrated for diagnosis (Brier score = 0.18) and triage (Brier score = 0.22).

LE Who is Pete Szolovits?

LE Who is Pete Szolovits?

Pete Szolovits is a computer scientist and professor at the Massachusetts Institute of Technology (MIT). He was born on October 8, 1946, in Budapest, Hungary. He received his undergraduate degree from Brown University in 1968 and his PhD from Stanford University in 1974.

Can you give me some references on digital epidemiology?

Sure, here are some references on digital epidemiology that you might find useful: $ilde{D}$ $extsf{P}$

- Fox, J., & Dugas, M. (2018). Digital epidemiology: A new paradigm for infectious disease surveillance. Annual Review of Public Health, 39(1), 171-186.
- Jombart, T., Cori, A., Didelot, X., Cauchemez, S., Fraser, C., & Ferguson, N. M. (2010). Discriminating between epidemic and non-epidemic situations using high-resolution surveillance data. Epidemics, 2(3), 87-95.
- Salathé, M., & Khandelwal, S. (2017). Digital epidemiology. Annual Review of Public Health, 38, 105–120.
- Scarpino, S. V., & Allard, A. (2017). Big data in epidemiology: Opportunities and challenges. Journal of the Royal Society Interface, 14(130), 20170408.
- Tariq, M. H., & Davis, C. (2019). Digital epidemiology: An emerging discipline for studying infectious diseases in the digital age. Infection, Disease & Health, 24(3), 153-157.
- Vespignani, A. (2012). Modelling dynamic and multi-scale phenomena with computational social science. Nature Physics, 8(9), 32-39.

G

Hiccups, a common affliction that most individuals experience at some point in their lives, are often benign and resolve spontaneously. However, persistent hiccups, defined as hiccups lasting for more than 48 hours, can lead to significant morbidity, including malnutrition, weight loss, sleep disturbance, and rare complications such as pneumothorax or esophageal rupture. Treatment options for persistent hiccups are varied and often unsuccessful, with few proven effective therapies.

Water submersion therapy, also known as the "dunking" or "sink" method, has emerged as a promising treatment option for persistent hiccups. This therapy involves immersing the head in a container of water, with the goal of interrupting the hiccup reflex arc by activating the vagus and phrenic nerves.

A recent randomized controlled trial conducted by our group sought to evaluate the effectiveness of water submersion therapy in the treatment of persistent hiccups. A total of 50 patients with persistent hiccups were enrolled in the study and randomly assigned to receive either water submersion therapy or standard medical therapy. The primary outcome measure was resolution of hiccups within 24 hours of treatment initiation.

And even worse...

Microsoft Bing

Welcome to the new Bing

Your Al-powered answer engine

Ask anything

And even worse...

Microsoft Bing

 \bigcirc is it safe to boil a baby

ALL	IMAGES	VIDEOS	MAPS	NEWS

Your Al-powered answer engine

Ask anything

And even worse...

ALL

Microsoft Bing

is it safe to boil a baby

IMAGES

VIDEOS

MAPS

NEWS

About 86,100,000 results Date -

Welcome to the new Bing

Your Al-powered answer engine

Ask anything

According to 2 sources

Main Questions

• So you're probably wondering... how did we get here?

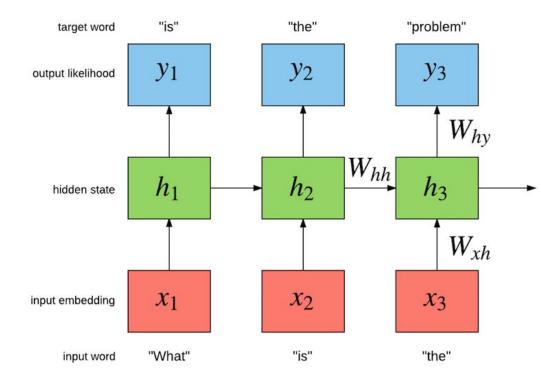
Main Questions

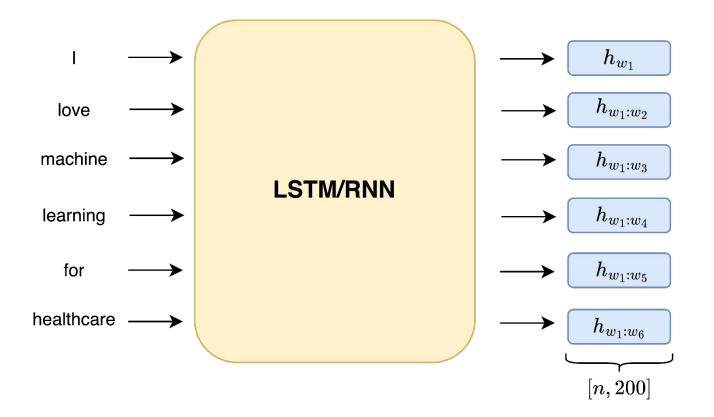
- So you're probably wondering... how did we get here?
- Why has the field moved so fast?

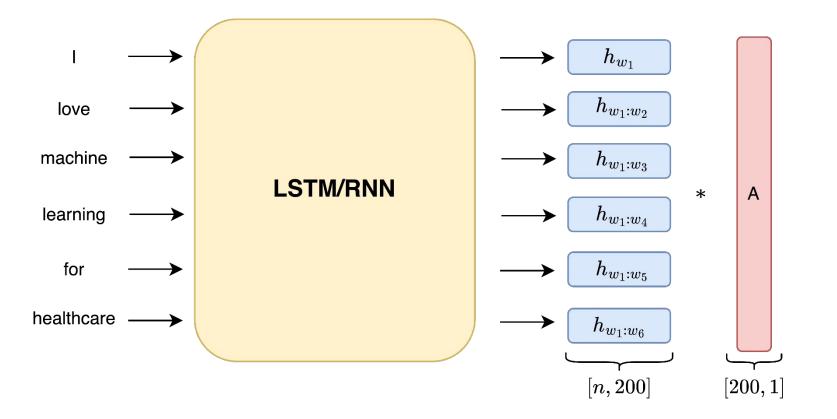
Main Questions

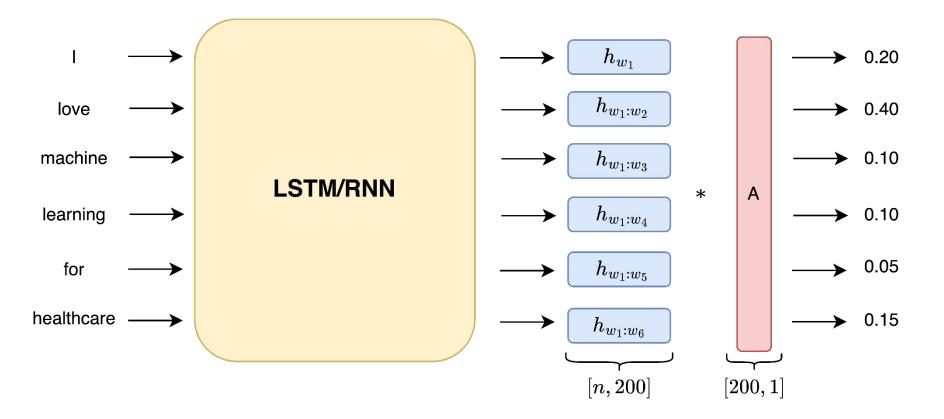
- So you're probably wondering... how did we get here?
- Why has the field moved so fast?
- What does it mean for healthcare?

Review: Recurrent Neural Networks









$$\fbox{0.2*h_{w_1:w_1}} \hspace{0.1 in} + \hspace{0.1 in} \fbox{0.4*h_{w_1:w_2}} \hspace{0.1 in} + \hspace{0.1 in} \fbox{0.1*h_{w_1:w_3}} \hspace{0.1 in} + \hspace{0.1 in} ... \hspace{0.1 in} + \hspace{0.1 in} \fbox{0.15*h_{w_1:w_n}}$$

Idea: How important is this word?

Attention Heatmaps: Predicting Number of Stars

Task: Hotel location

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n't be beaten , but it is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel cleanliness

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n't be beaten , but it is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b. *Task: Hotel service*

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n't be beaten , but it is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Attention is Not Explanation (2018)

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

> original lphaf(x|lpha, heta) = 0.01

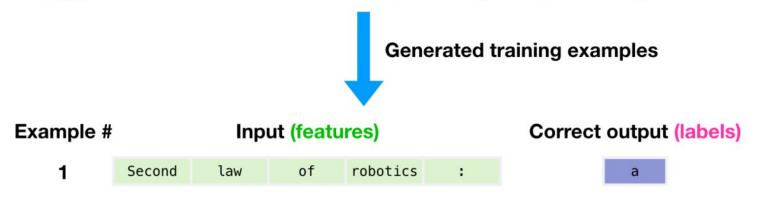
Attention is Not Explanation (2018)

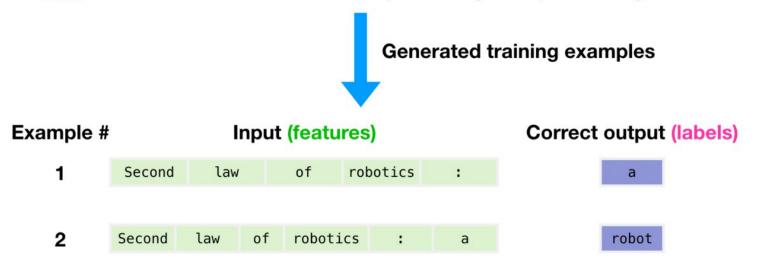
after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

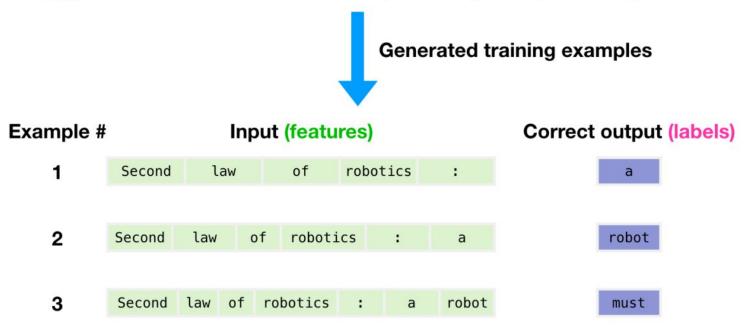
> original α $f(x|\alpha,\theta) = 0.01$

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

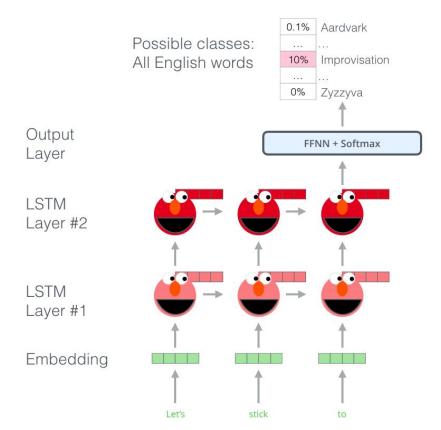
> adversarial $\tilde{\alpha}$ $f(x|\tilde{\alpha},\theta) = 0.01$



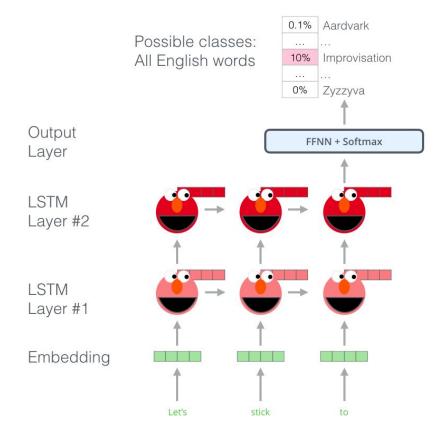




ELMO Pretraining – Language Modeling

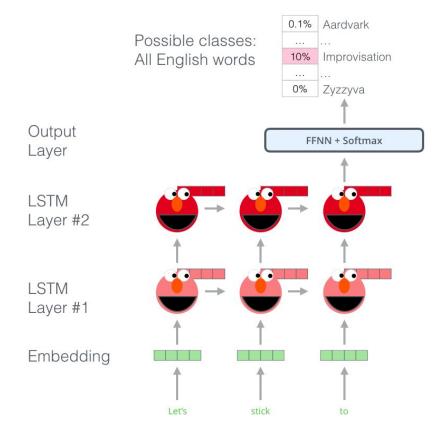


ELMO Pretraining – Language Modeling



Q: How is learning to predict the next word relevant to doing deidentification, predicting sepsis from nursing notes, etc?

ELMO Pretraining – Language Modeling



Q: How is learning to predict the next word relevant to doing deidentification, predicting sepsis from nursing notes, etc?

A: It allows us learn how to represent words & sentences FOR FREE.

How Would You Use ELMO For a Clinical Task?

How Would You Use ELMO For a Clinical Task?

1. Load the model that has been trained to predict:

$$P(w_i|w_1,w_2\ldots,w_{i-1})$$

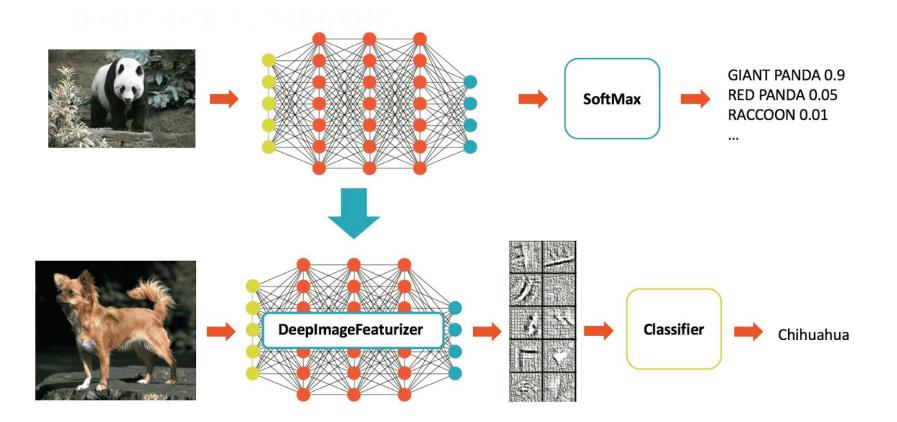
How Would You Use ELMO For a Clinical Task?

1. Load the model that has been trained to predict:

$$P(w_i|w_1,w_2\ldots,w_{i-1})$$

 Use the model to encode your sentence and train it on YOUR task.

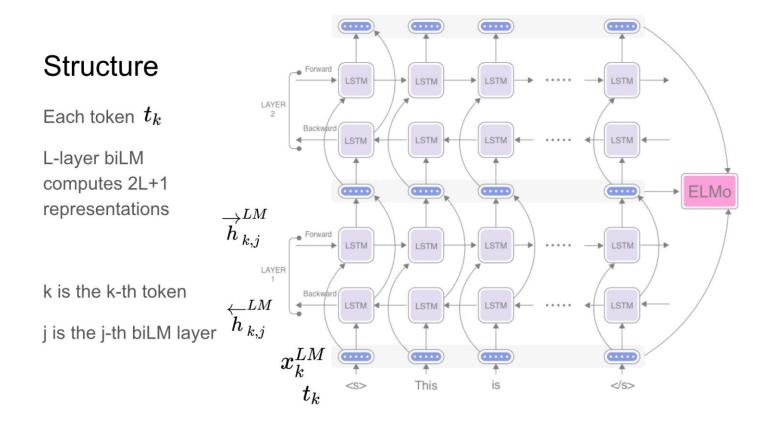
Transfer Learning/Pretraining



Any Questions Thus Far?

This is essential for the rest of the lecture!

ELMO (2018)



ELMO Summary (2018)

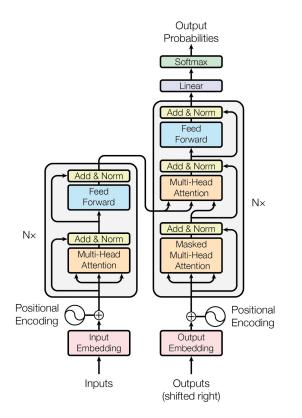
• Allows for contextual representations of words

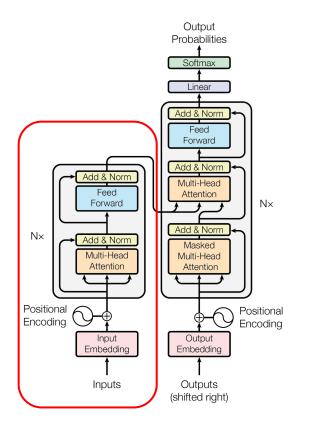
ELMO Summary (2018)

- Allows for contextual representations of words
- Similar to Word2Vec, this is unsupervised (i.e., pretraining)

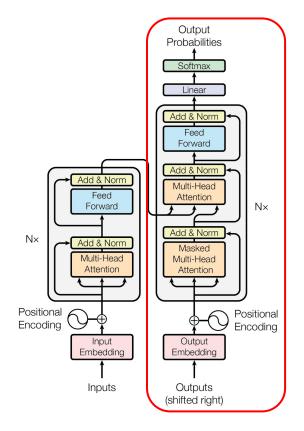
ELMO Summary (2018)

- Allows for contextual representations of words
- Similar to Word2Vec, this is unsupervised (i.e., pretraining)
- SUPER SLOW





Encoder: reads the entire sequence all at once.



Encoder: reads the entire sequence all at once.

Decoder: reads left to right (but parallelized)

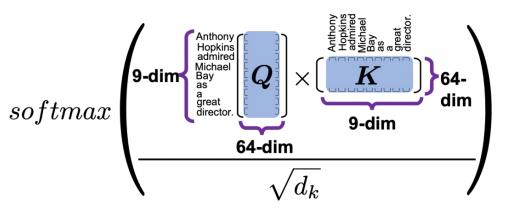
Step 1: Take each word in the sequence and create a word embedding for it.

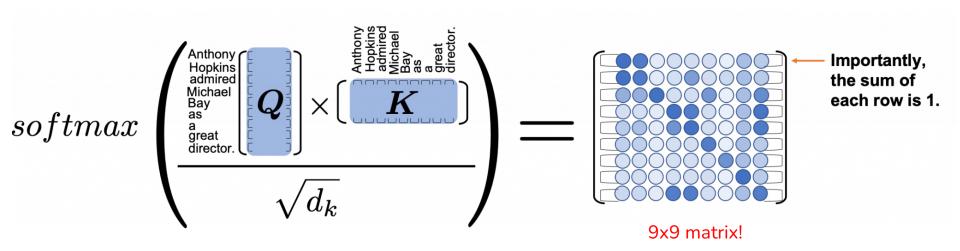
Step 1: Take each word in the sequence and create a word embedding for it.

"Anthony Hopkins admired Michael Bay as a great director"

Step 1: Take each word in the sequence and create a word embedding for it.

"Anthony Hopkins admired Michael Bay as a great director"





for word1 in sentence:

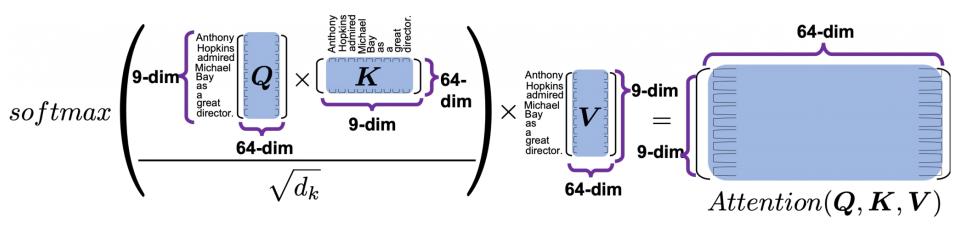
row = []

for word2 in sentence:

score = word1 * word2

row.append(score)

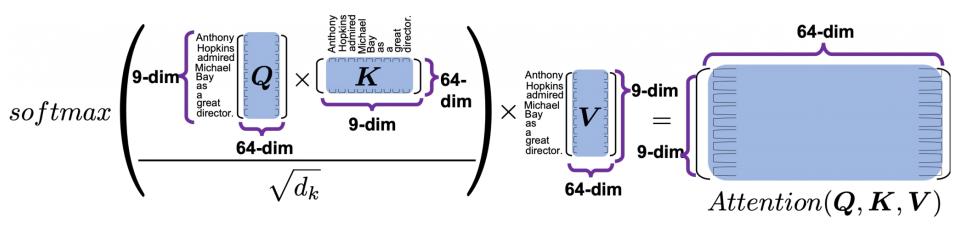
softmax(row)



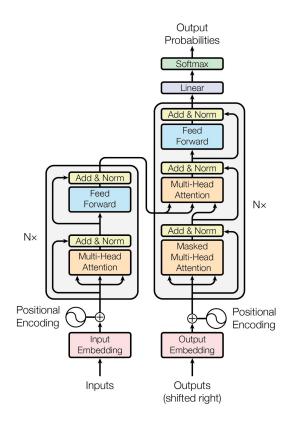
The_		The_
animal_		animal_
didn_		didn_
'		1
t_		t_
cross_		cross_
the_		the_
street_		street_
because_		because_
it_		it_
was_		was_
too_		too_
tire		tire
d_	\.	d_

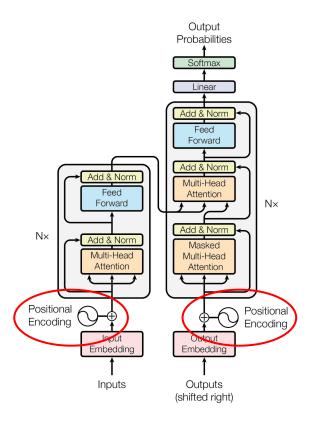
The_		The_
animal_		animal_
didn_		didn_
'		1
t_		t_
cross_		cross_
the_		the_
street_		street_
because_		because_
it_		it_
was_		was_
too_		too_
tire		tire
d_	Ν.	d_

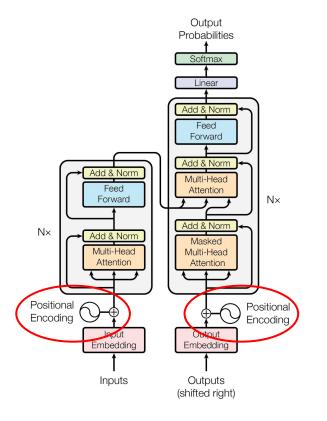
Idea: How important is *this word*, with respect to ALL other words?



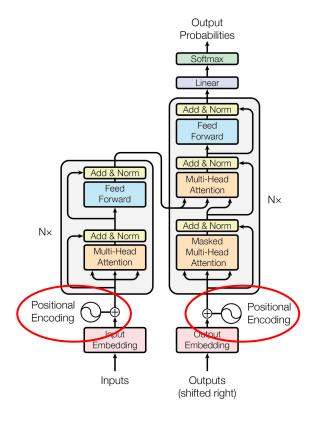
Where is the ordering? Isn't this just a big bag of words???



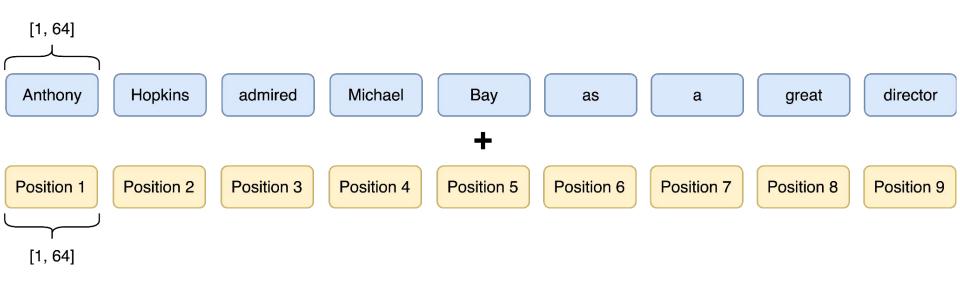




 Every position (i.e., the first, second, third... word) has a unique vector that represents it's position in the sentence/paragraph



- Every position (i.e., the first, second, third... word) has a unique vector that represents it's position in the sentence/paragraph
- These are randomly initialized and learned by the model!



Transformer Performance

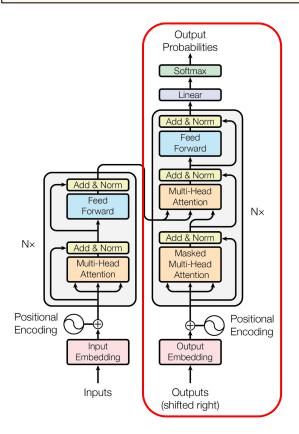
Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

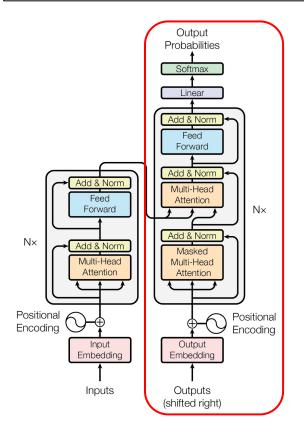
Model	BLEU		Training Cost (FLOPs)		
WIOUEI	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$	
Transformer (base model)	27.3	38.1	3.3 •	10^{18}	
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}	

Transformer Speed

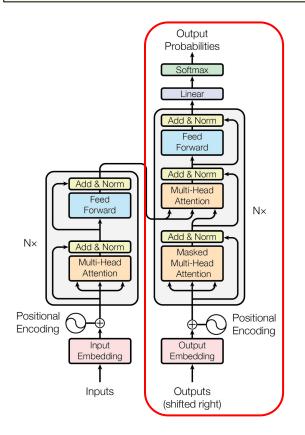
Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k\cdot n\cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

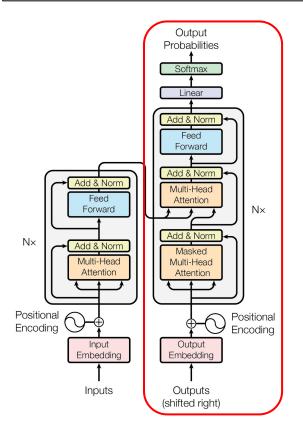




 Pretraining using next word prediction on 7000 books (1B words)



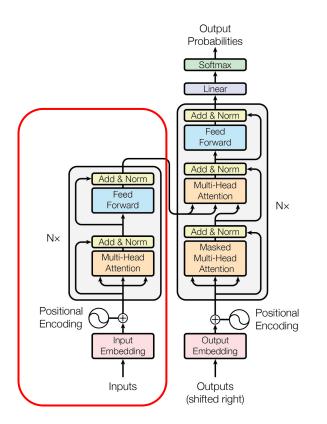
- Pretraining using next word prediction on 7000 books (1B words)
- Autoregressive: Reads left-to-right



- Pretraining using next word prediction on 7000 books (1B words)
- Autoregressive: Reads left-to-right
- 117M parameters

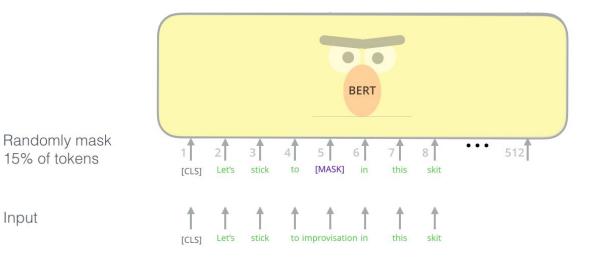
Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	<u>89.3</u>	-	-	-
CAFE [58] (5x)	80.2	79.0	<u>89.3</u>	-	-	-
Stochastic Answer Network [35] (3x)	<u>80.6</u>	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	<u>83.3</u>		
GenSen [64]	71.4	71.3	-	-	<u>82.3</u>	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

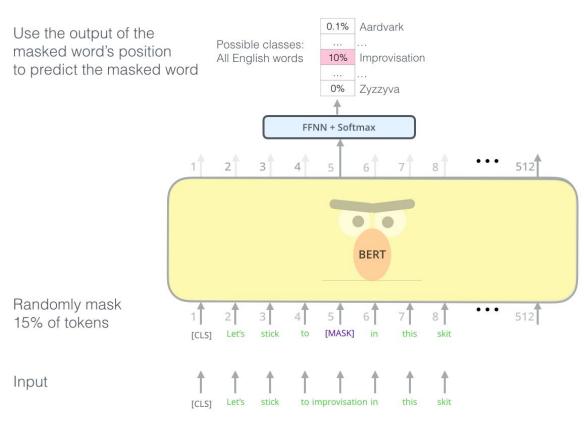
Bidirectional Encoder Representations from Transformers (BERT)

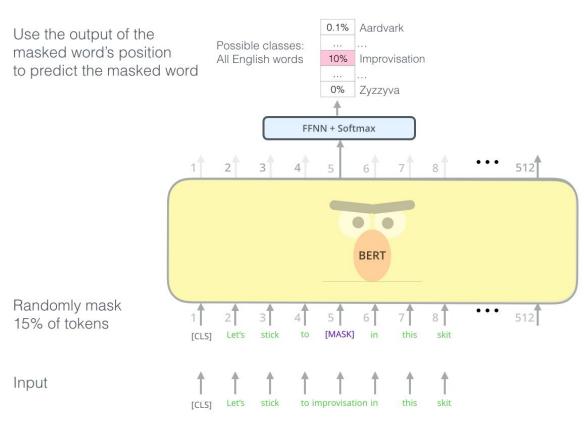


BERT + Masked Language Modeling

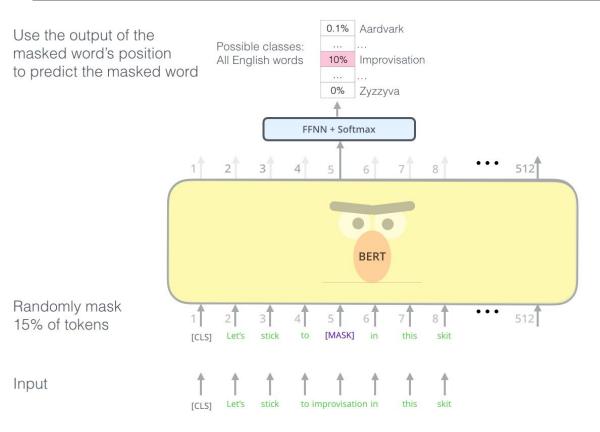
Input







- Pretrained on
 - ~3.4B words for 40 epochs



- Pretrained on
 - ~3.4B words for 40 epochs
- 110M and 345M parameter models

BERT Performance

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Domain Adaptive Pretraining (DAPT)

Domain Adaptive Pretraining (DAPT)

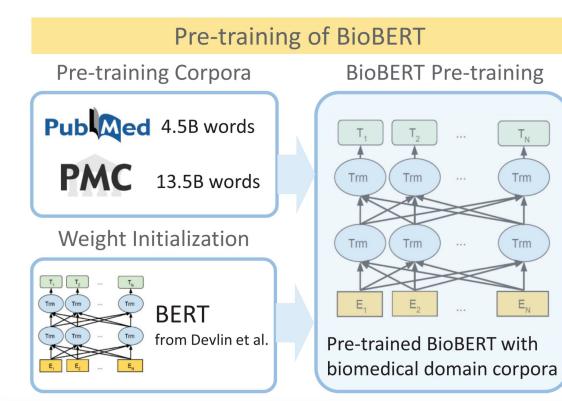
Idea: BERT is trained over news, Wikipedia, and other "general" sources. This is not ideal for biomedical tasks.

Domain Adaptive Pretraining (DAPT)

Idea: BERT is trained over news, Wikipedia, and other "general" sources. This is not ideal for biomedical tasks.

Solution: Pretrain on PubMed (i.e., biomedical text).

BioBERT (2019)



BioBERT (2019)

				BERT	BioBERT v1.0	BioBERT v1.0		
Type	Datasets	Metrics	SOTA	(Wiki + Books)	(+ PubMed)	(+ PMC)	(+ PubMed + PMC)	(+ PubMed)
Disease	NCBI disease	Р	88.30	84.12	86.76	86.16	89.04	88.22
		R F	89.00 88.60	87.19 85.63	88.02 87.38	89.48 87.79	<u>89.69</u> 89.36	91.25 89.71

ClinicalBERT (2020)

Question: Clinical notes are even stranger than biomedical text. Can we do the same for clinical notes?

ClinicalBERT (2020)

Question: Clinical notes are even stranger than biomedical text. Can we do the same for clinical notes?

Answer: Yes!

ClinicalBERT (2020)

Question: Clinical notes are even stranger than biomedical text. Can we do the same for clinical notes?

Answer: Yes!

Model	MedNLI	i2b2 2006	i2b2 2010	i2b2 2012	i2b2 2014
BERT	77.6%	93.9	83.5	75.9	92.8
BioBERT	80.8%	94.8	86.5	78.9	93.0
Clinical BERT	80.8%	91.5	86.4	78.5	92.6
Discharge Summary BERT	80.6%	91.9	86.4	78.4	92.8
Bio+Clinical BERT	82.7%	94.7	87.2	78.9	92.5
Bio+Discharge Summary BERT	82.7%	94.8	87.8	78.9	92.7

• Same pretraining task: next word prediction

- Same pretraining task: next word prediction
- Pretrain on more data (40GB of text)

- Same pretraining task: next word prediction
- Pretrain on more data (40GB of text)
- Use bigger models

- Same pretraining task: next word prediction
- Pretrain on more data (40GB of text)
- Use bigger models

	LAMBADA	LAMBADA	CBT-CN	CBT-NE	WikiText2	PTB	enwik8	text8	WikiText103	1BW
	(PPL)	(ACC)	(ACC)	(ACC)	(PPL)	(PPL)	(BPB)	(BPC)	(PPL)	(PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117 M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

1. **ELMO**: Pretraining contextualized word embeddings

- 1. **ELMO**: Pretraining contextualized word embeddings
- 2. BERT & GPT: Pretraining a transformer improves performance

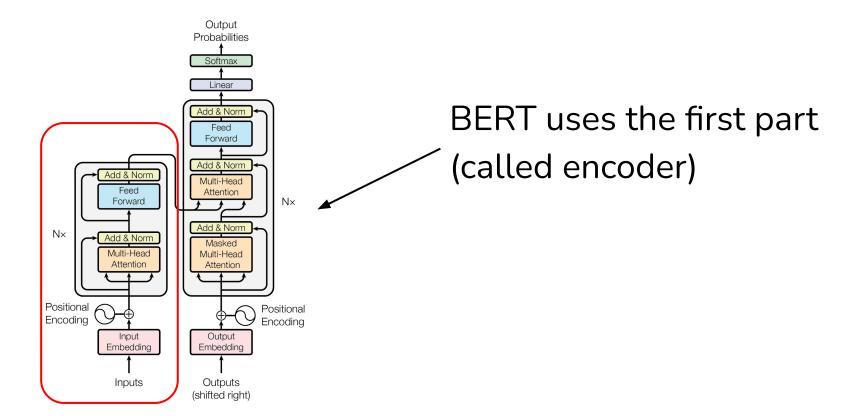
- 1. **ELMO**: Pretraining contextualized word embeddings
- 2. BERT & GPT: Pretraining a transformer improves performance
- 3. **ClinicalBERT**: Pretraining on clinical text helps with clinical tasks

- 1. **ELMO**: Pretraining contextualized word embeddings
- 2. BERT & GPT: Pretraining a transformer improves performance
- 3. **ClinicalBERT**: Pretraining on clinical text helps with clinical tasks
- 4. **GPT-2**: Scaling these models helps a lot!

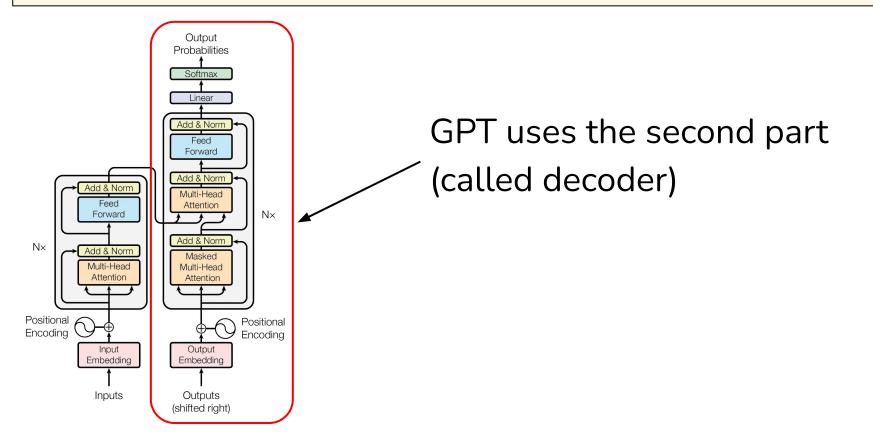
- 1. **ELMO**: Pretraining contextualized word embeddings
- 2. BERT & GPT: Pretraining a transformer improves performance
- 3. **ClinicalBERT**: Pretraining on clinical text helps with clinical tasks
- 4. **GPT-2**: Scaling these models helps a lot!

Questions so far?

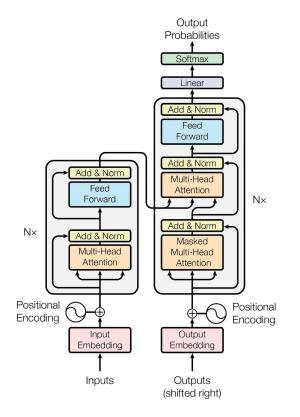
Text-to-Text Transfer Transformer (T5) (2020)



Text-to-Text Transfer Transformer (T5) (2020)



Text-to-Text Transfer Transformer (T5) (2020)



T5 uses the entire architecture.

T5 Performance

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline average	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Baseline standard deviation	0.235	0.065	0.343	0.416	0.112	0.090	0.108
No pre-training	66.22	17.60	50.31	53.04	25.86	39.77	24.04

How Much Unique Text to Pretrain On?

Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Full data set 2^{29}	0	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2^{27} 2^{27}	$\frac{64}{256}$	82.87 82.62	$19.19 \\ 19.20$	80.97 79.78	72.03 69.97	$\begin{array}{c} 26.83 \\ 27.02 \end{array}$	$\begin{array}{c} 39.74 \\ 39.71 \end{array}$	27.63 27.33
$2^{25} \ 2^{23}$	$1,\!024 \\ 4,\!096$	$\begin{array}{c} 79.55 \\ 76.34 \end{array}$	$\begin{array}{c} 18.57 \\ 18.33 \end{array}$	76.27 70.92	$\begin{array}{c} 64.76 \\ 59.29 \end{array}$	$\begin{array}{c} 26.38\\ 26.37 \end{array}$	$\begin{array}{c} 39.56\\ 38.84 \end{array}$	$\begin{array}{c} 26.80\\ 25.81 \end{array}$
Z	4,090	70.34	10.33	10.92	39.29	20.57	30.04	20.01

Scale Scale Scale

Model	GLUE Average	CoLA Matthew's	SST-2 Accuracy	$\begin{array}{c} \mathrm{MRPC} \\ \mathrm{F1} \end{array}$	MRPC Accuracy	STS-B Pearson	STS-B Spearman
Previous best	89.4^{a}	69.2^{b}	97.1^{a}	93.6^{b}	91.5^{b}	92.7^{b}	92.3^{b}
m T5-Small (80M)	77.4	41.0	91.8	89.7	86.6	85.6	85.0
$\mathrm{T5} ext{-}\mathrm{Base}$ (220M)	82.7	51.1	95.2	90.7	87.5	89.4	88.6
m T5-Large (770M)	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8

Pretraining is expensive...

Pretraining is expensive...

Back in 2018, the cost to train BERT was \$7000. What about now?

Pretraining is expensive...

Back in 2018, the cost to train BERT was \$7000. What about now?

Just \$38!!!

• 175B parameter model trained on 300B words

- 175B parameter model trained on 300B words
- This model is REALLY good at next word prediction

- 175B parameter model trained on 300B words
- This model is REALLY good at next word prediction
- Do we still need to train models?

You can frame any NLP task as a next word completion task.

You can frame any NLP task as a next word completion task.

• **Mortality Prediction**: "Based on the above note, do you think that the patient will die?"

You can frame any NLP task as a next word completion task.

- **Mortality Prediction**: "Based on the above note, do you think that the patient will die?"
- **De-identification**: "List all of the names mentioned in the note:"

Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

Input: Bob was sent to IR for thrombolysis. Post IR, ultrasound showed that... What does IR stand for?

Output: Interventional radiology

Algorithm	CASI Acc.	CASI Macro F1	MIMIC Accuracy	MIMIC Macro F1
Random	0.31	0.23	0.32	0.28
Most Common	0.79	0.28	0.51	0.23
BERT (from Adams et al. (2020))	0.42	0.23	0.40	0.33
ELMo (from Adams et al. (2020))	0.55	0.38	0.58	0.53
LMC (from Adams et al. (2020))	0.71	0.51	0.74	0.69
GPT-3 edit + R: 0-shot	0.86	0.69	*	*
<i>GPT-3 edit</i> + R: 0-shot + distillation	0.90	0.76	0.78	0.69

Algorithm	CASI Acc.	CASI Macro F1	MIMIC Accuracy	MIMIC Macro F1
Random	0.31	0.23	0.32	0.28
Most Common	0.79	0.28	0.51	0.23
BERT (from Adams et al. (2020))	0.42	0.23	0.40	0.33
ELMo (from Adams et al. (2020))	0.55	0.38	0.58	0.53
LMC (from Adams et al. (2020))	0.71	0.51	0.74	0.69
GPT-3 edit + R: 0-shot	0.86	0.69	*	*
<i>GPT-3 edit</i> + R: 0-shot + distillation	0.90	0.76	0.78	0.69

Agrawal et. al (2022) showed that GPT-3 had strong performance on a number of clinical extraction tasks.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

No.	Category	Template	Accuracy
1	instructive	Let's think step by step.	(78.7)
2		First, (*1)	77.3
3		Let's think about this logically.	74.5
4		Let's solve this problem by splitting it into steps. (*2)	72.2
5		Let's be realistic and think step by step.	70.8
6		Let's think like a detective step by step.	70.3
7		Let's think	57.5
8		Before we dive into the answer,	55.7
9		The answer is after the proof.	45.7
10	misleading	Don't think. Just feel.	18.8
11	-	Let's think step by step but reach an incorrect answer.	18.7
12		Let's count the number of "a" in the question.	16.7
13		By using the fact that the earth is round,	9.3
14	irrelevant	By the way, I found a good restaurant nearby.	17.5
15		Abrakadabra!	15.5
16		It's a beautiful day.	13.1
-		(Zero-shot)	17.7

Jeanne wants to ride the Ferris wheel, the roller coaster, and the bumper cars. The Ferris wheel costs 5 tickets, the roller coaster costs 4 tickets and the bumper cars cost 4 tickets. Jeanne has 5 tickets. *Jeanne's neighbor rides 8 kilometers to the bus station every day.* How many more tickets should Jeanne buy?

Standard Answer

8

Solve the following math problem. Feel free to ignore irrelevant information in the given problems.

Jeanne wants to ride the Ferris wheel, the roller coaster, and the bumper cars. The Ferris wheel costs 5 tickets, the roller coaster costs 4 tickets and the bumper cars cost 4 tickets. Jeanne has 5 tickets. *Jeanne's neighbor rides 8 kilometers to the bus station every day.* How many more tickets should Jeanne buy?

You are a helpful medical knowledge assistant. Provide useful, complete, and scientifically-grounded answers to common consumer search queries about health.

Question: How do you treat skin redness?

Complete Answer: It depends on the cause of the skin redness. For example, if the cause is cellulitis, then antibiotics may be required. However, this might be be inappropriate for other causes of redness such as eczema. The first step should be to establish the cause of the redness, which may require seeing a doctor.

Tons of New Models

- Llama (65B)
- Chinchilla (70B)
- Gopher (270B)
- Megatron-Turing NLG (530B)
- Palm (540B)
- etc.

Tons of New Models

- Llama (65B)
- Chinchilla (70B)
- Gopher (270B)
- Megatron-Turing NLG (530B)
- Palm (540B)
- etc.

Would need 1TB GPU RAM to naively load.

Tons of New Models

- Llama (65B)
- Chinchilla (70B)
- Gopher (270B)
- Megatron-Turing NLG (530B)
- Palm (540B)
- etc.

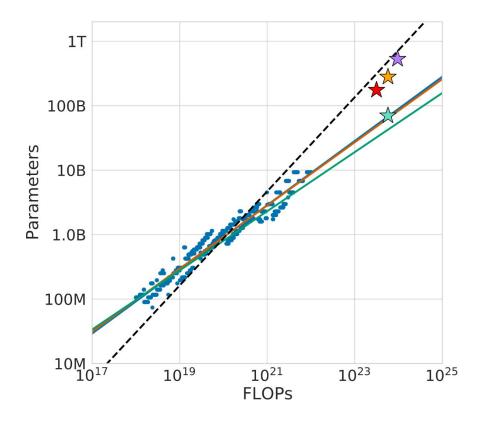
Suppose you have a fixed training budget, but no restriction on model size and no restriction on amount of data available.

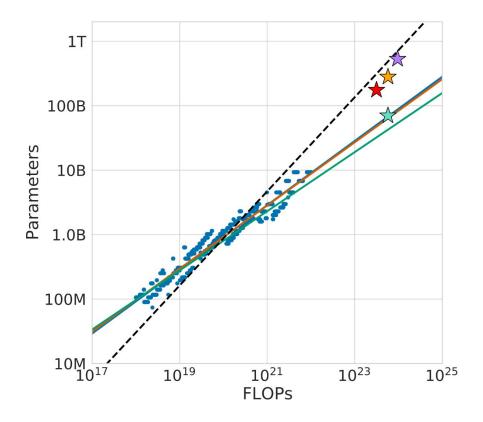
Suppose you have a fixed training budget, but no restriction on model size and no restriction on amount of data available.

1. What size model should you choose?

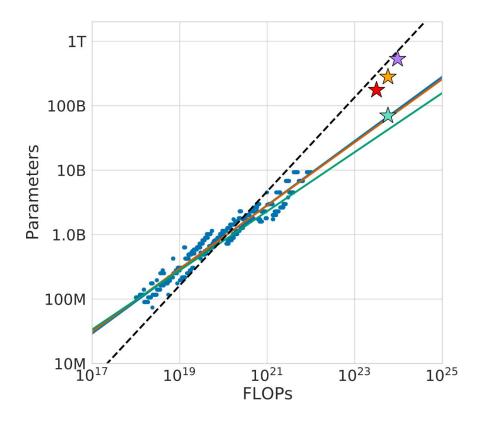
Suppose you have a fixed training budget, but no restriction on model size and no restriction on amount of data available.

- 1. What size model should you choose?
- 2. How long should you pretrain it for?

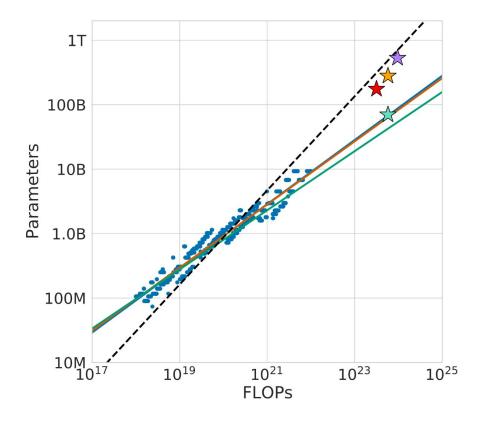




1. Be on the line!!!



- 1. Be on the line!!!
- Above the line = you could've done something better



- 1. Be on the line!!!
- Above the line = you could've done something better
- Below the line = you should've picked a smaller model

Forcing your model to read isn't the only way to improve performance!

Forcing your model to read isn't the only way to improve performance!

 \equiv TIME

TIME TURNS 100 EXPLORE OUR ARCHIVES

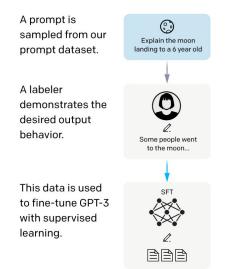
SIGN IN SUBSCRIBE FOR \$19 C

BUSINESS . TECHNOLOGY

Exclusive: OpenAI Used Kenyan Workers on Less Than \$2 Per Hour to Make ChatGPT Less Toxic

Step 1

Collect demonstration data, and train a supervised policy.



Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

 \bigcirc Explain the moon landing to a 6 year old

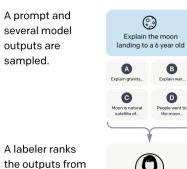
()

Some people went to the moon...

SET Ĩ BBB Step 2

sampled.

Collect comparison data, and train a reward model.



D>C>A=B

B

D

the moon.

This data is used to train our reward model.

best to worst.

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

 \bigcirc Explain the moon landing to a 6 year old

(**)

Some people went to the moon...

Step 2 Collect comparison data, and train a reward model.

A prompt and

several model

A labeler ranks

best to worst.

outputs are

sampled.

0 Explain the moon

> C D People went to the moon

the outputs from

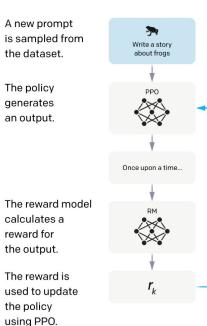
This data is used to train our reward model.

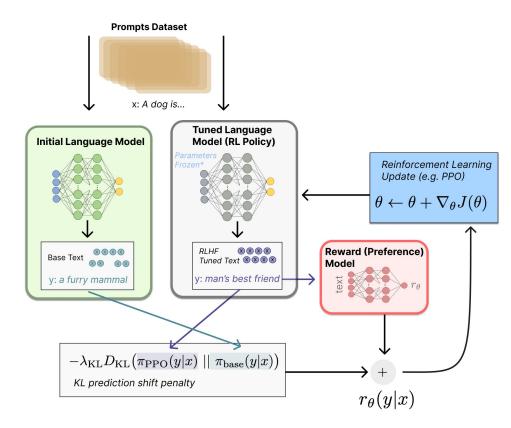
landing to a 6 year old A B Explain gravity. Explain war... Moon is natural satellite of ...

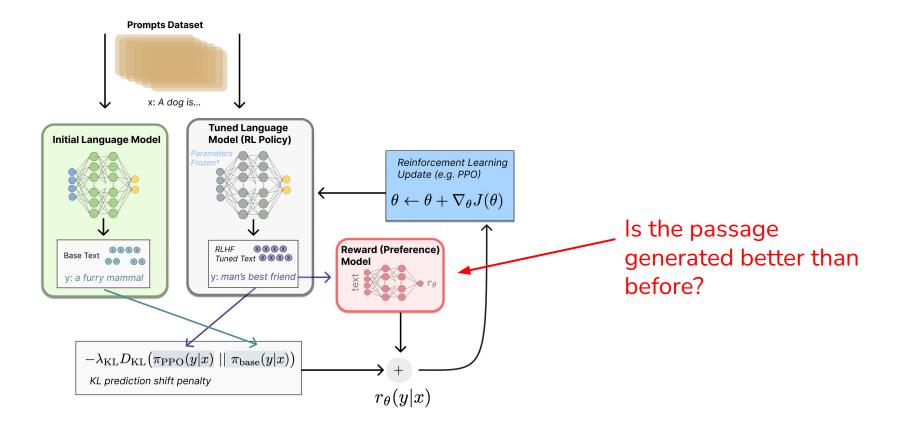
D > C > A = B

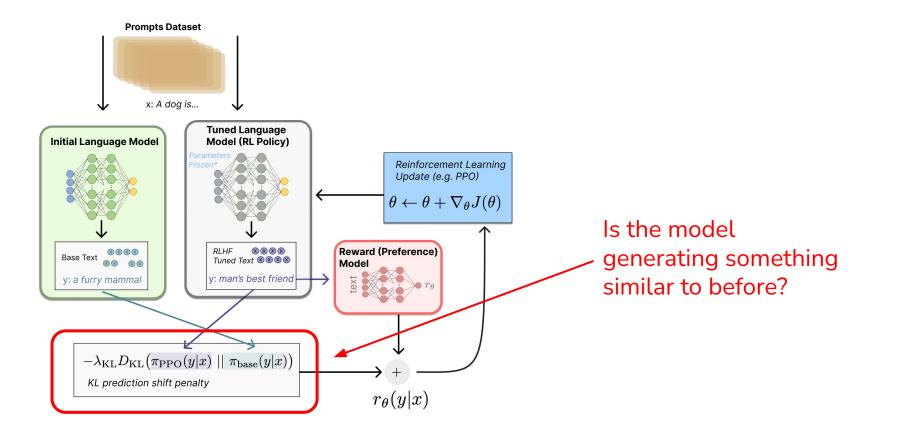
Step 3

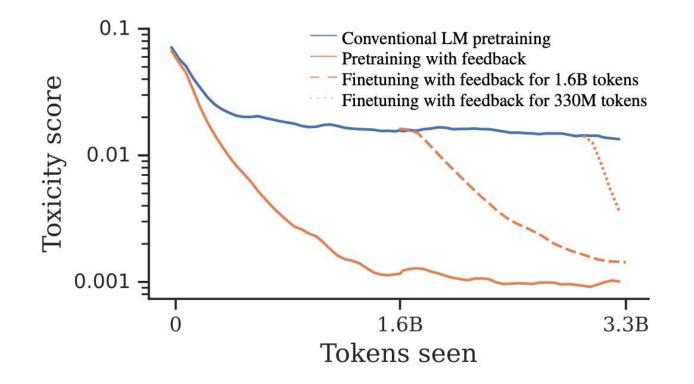
Optimize a policy against the reward model using reinforcement learning.











What Does This Mean For Healthcare?

What Does This Mean For Healthcare?

• Is it still working on these problems?

What Does This Mean For Healthcare?

- Is it still working on these problems?
- Is it still worth creating custom models for clinical text?

What Does This Mean For Healthcare?

- Is it still working on these problems?
- Is it still worth creating custom models for clinical text?

Do We Still Need Clinical Language Models?

Eric Lehman^{1,2} Evan Hernandez^{1,2} Diwakar Mahajan³ Jonas Wulff² Micah J. Smith² Zachary Ziegler² Daniel Nadler² Peter Szolovits¹ Alistair Johnson⁴ Emily Alsentzer^{5,6} ¹MIT ²Xyla ³IBM Research ⁴The Hospital for Sick Children ⁵Brigham and Women's Hospital ⁶Harvard Medical School {lehmer16, dez}@mit.edu

• Safety matters

- Safety matters
- Models trained on the general web are likely biased

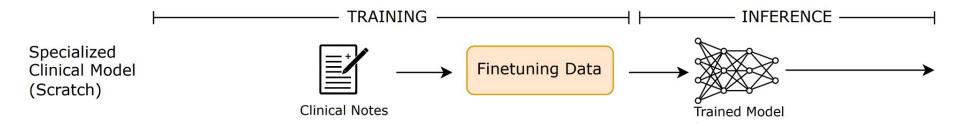
- Safety matters
- Models trained on the general web are likely biased
- The text from a note is very different

- Safety matters
- Models trained on the general web are likely biased
- The text from a note is very different
 - Random abbreviations

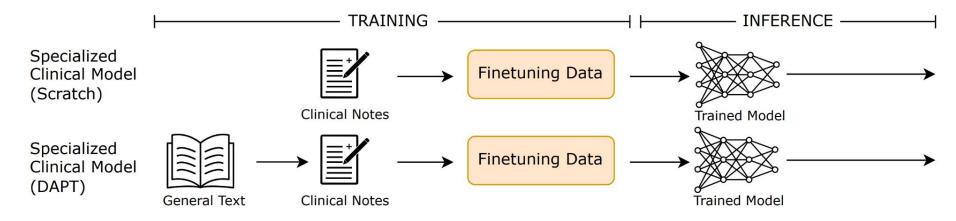
- Safety matters
- Models trained on the general web are likely biased
- The text from a note is very different
 - Random abbreviations
 - Incorrect grammar

- Safety matters
- Models trained on the general web are likely biased
- The text from a note is very different
 - Random abbreviations
 - Incorrect grammar
 - Medical Terms

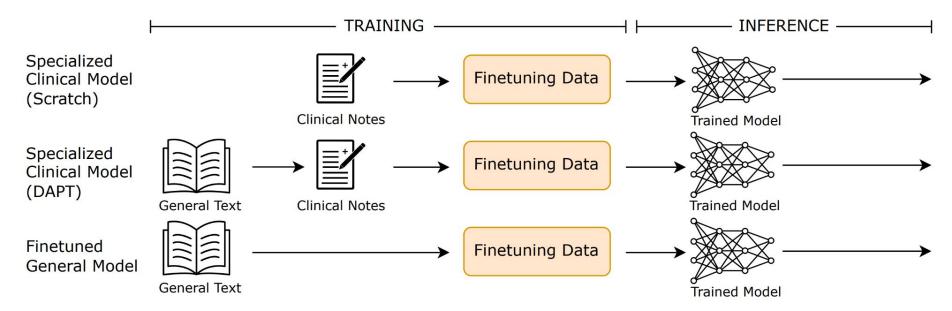
- Safety matters
- Models trained on the general web are likely biased
- The text from a note is very different
 - Random abbreviations
 - Incorrect grammar
 - Medical Terms
- You can't find this text online!!!



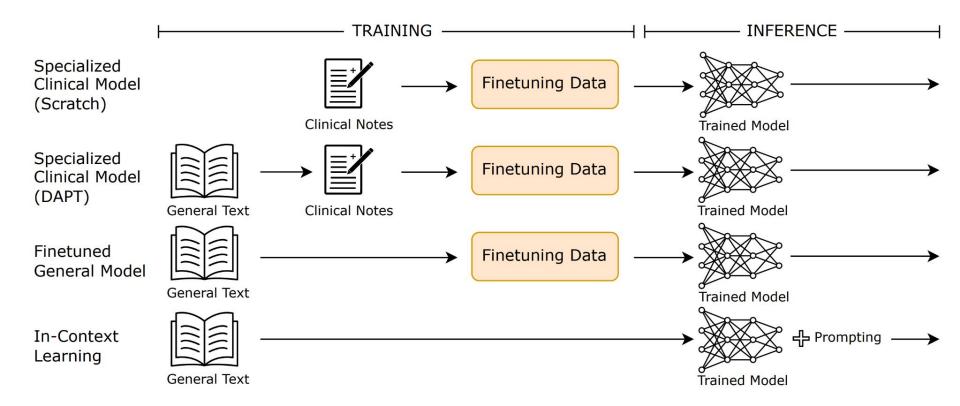
Option 1: Randomly initialize your model and train your own language model ON clinical notes from scratch



Option 2: Initialize your model from a model trained on the general web, and further train it on clinical notes.



Option 3: Download some model trained on the internet and finetune it.



		MedNLI	RadQA		CLIP	
Size	Model	Acc.	EM	F1	Micro F1	Macro F1
220M	T5-Base Clinical-T5-Base-Ckpt Clinical-T5-Base	0.818 0.852 0.855	0.479 0.507 0.531	0.662 0.689 0.710	0.767 0.772 0.793	0.594 0.605 0.652

		MedNLI	RadQA		CLIP	
Size	Model	Acc.	EM	F1	Micro F1	Macro F1
220M	T5-Base Clinical-T5-Base-Ckpt Clinical-T5-Base	$0.818 \\ 0.852 \\ 0.855$	0.479 0.507 0.531	0.662 0.689 0.710	0.767 0.772 0.793	0.594 0.605 0.652
770M	T5-Large Clinical-T5-Large	0.849 0.872	0.537 0.550	0.700 0.745	0.779 0.800	0.629 0.663

		MedNLI	RadQA		CLIP	
Size	Model	Acc.	EM	F1	Micro F1	Macro F1
220M	T5-Base	0.818	0.479	0.662	0.767	0.594
	Clinical-T5-Base-Ckpt	0.852	0.507	0.689	0.772	0.605
	Clinical-T5-Base	0.855	0.531	0.710	0.793	0.652
770M	T5-Large	0.849	0.537	0.700	0.779	0.629
	Clinical-T5-Large	0.872	0.550	0.745	0.800	0.663

		MedNLI	RadQA		CLIP	
Size	Model	Acc.	EM	F1	Micro F1	Macro F1
220M	T5-Base Clinical-T5-Base-Ckpt Clinical-T5-Base	0.818 0.852 0.855	0.479 0.507 0.531	0.662 0.689 0.710	0.767 0.772 0.793	0.594 0.605 0.652
770M	T5-Large Clinical-T5-Large	0.849 0.872	0.537 0.550	0.700 0.745	0.779 0.800	0.629 0.663
3B	T5-XL	0.869	0.568	0.729	0.780	0.640

- 1. Yes It allows for smaller models, but similar performance!
- 2. You will eventually recover the costs of doing this extra training.

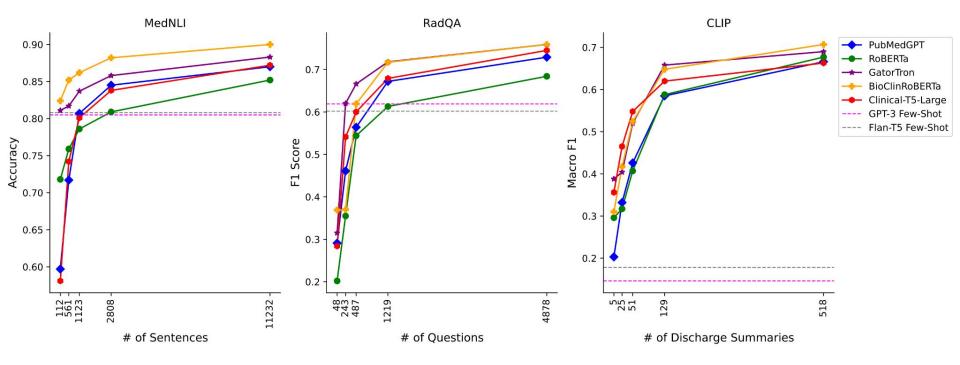
What About Just Using GPT-3?

• GPT-3 doesn't require any training data – you just ask it!

What About Just Using GPT-3?

- GPT-3 doesn't require any training data you just ask it!
- For a fair comparison, we evaluate smaller models tailored to work with clinical text on a **SMALL** number of samples.

What About Just Using GPT-3



But ChatGPT Passed the USMLE!!!

But ChatGPT Passed the USMLE!!!

Working with clinical notes != taking a test.

Conclusions

• GPT-3 is very very good in constrained settings

Conclusions

- GPT-3 is very very good in constrained settings
- However, if you're looking for the best performance, you should still customize your approach *for the* clinical space!

The Future

KS Health System Unveils Generative Al Partnership

The University of Kansas Health System will use generative AI to summarize provider-patient conversations and generate clinical documentation in real-time.

https://tinyurl.com/mlhc2023

Sign-in sheet!